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Inelastic scattering and interactions of three-wave parametric solitons
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We study the interactions of velocity-locked three-wave parametric solitons in a medium with quadratic
nonlinearity and dispersion. We reveal that the inelastic scattering between three-wave solitons and linear
waves may be described in terms of analytical solutions with dynamically varying group velocity, or boomer-
ons. Moreover, we demonstrate the elastic nature of three-wave soliton-soliton collisions and interactions.
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Three-wave resonant interactions (TWRIs) are wide-
spread in various branches of physics, as they describe the
resonant mixing of waves in weakly nonlinear and dispersive
media. The TWRI model is typically encountered in the de-
scription of any conservative nonlinear medium where the
nonlinear dynamics can be considered as a perturbation of
the linear wave solution, the lowest-order nonlinearity is
quadratic in the field amplitudes, and the phase-matching (or
resonance) condition is satisfied. Solutions for the TWRIs
have been known for a long time [1-9], and extensive appli-
cations are found in nonlinear optics (parametric amplifica-
tion, frequency conversion, stimulated Raman and Brillouin
scattering), plasma physics (laser-plasma interactions, radio
frequency heating, plasma instabilities), acoustics (light-
acoustic interactions), fluid dynamics (interaction of water
waves), and solid state physics (wave-wave scattering). Soli-
ton solutions of the TWRIs are of particular interest in the
study of coherent energy transport and frequency conversion.
Indeed, the potential applicability of solitons originates from
their particlelike behavior. In the context of TWRI solitons,
their different component waves should propagate locked to-
gether as a single coherent structure, an effect that has no
counterpart for linear waves [1,3-5,10-14]. We recently in-
troduced such structures as a multiparameter TWRI soliton
family, consisting of triplets of bright-bright-dark waves (or
simultons) which travel with a common group velocity [15].
We could also identify the conditions for the stability and
instability of these TWRI simultons (TWRISs) [15].

In this Rapid Communication we reveal and explore an-
other feature of the particlelike nature of the TWRI simul-
tons discussed in Refs. [1,3-5,15], namely, the inelastic scat-
tering of TWRISs with particular linear waves. More
specifically, in this work (i) we present a multiparameter
family of explicit solutions (boomerons) of the three-wave
equations which exactly describe the scattering of a TWRIS
with a linear wave, (ii) we prove that this family includes as
an asymptotic state as t— x% the TWRIS of Refs.
[1,3-5,15], and (iii) we show that an unstable TWRIS decays
to a stable TWRIS by properly accelerating its group veloc-
ity to a certain different value. We would like to emphasize
that the inelastic scattering phenomenon which is investi-
gated here is associated with the excitation (decay) of stable
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(unstable) simultons by means of the absorption (emission)
of the energy carried by an isolated linear pulse. The decay
(excitation) of simultons is associated with their speedup
(slowing down) and creation of another triplet with comple-
mentary stability properties. The scattering of solitons and
linear waves, which has been so far largely unexplored in the
literature, is analytically described here by means of
boomeron-type solutions. Such a soliton-wave scattering
process is analogous to the interaction of radiation with a
two-level atomic system: transitions among excited and
ground soliton states are induced by the absorption and spon-
taneous emission of a proper linear wave. Lastly, we shall
reveal the elastic nature of the TWRI soliton-soliton colli-
sions and interactions.

The coupled partial differential equations that rule TWRIs
in (1+1) dimensions read as [2]

E) - V|E,,= EE;,
Ey —V,E,, = - E\E;,

Ey— ViEy, =E\E,, (1)

where the subscripts # and z denote derivatives in the longi-
tudinal and transverse dimensions, E,=E,(z,f) are the com-
plex wave amplitudes with velocities V,, and n=1,2,3. We
chose here V|>V,>V; which, together with the above
choice of the signs before the quadratic terms, entails the
nonexplosive character of the three-wave interaction [9]. In
the following, with no loss of generality, we shall consider
Egs. (1) in a reference frame with V3=0. Since we consider
resonant interactions, the frequencies and momenta of the
three waves must satisfy the prescriptions w; +w,+ w;=0 and
k1+k2+k320.

The TWRI equations (1) represent an infinite-dimensional
Hamiltonian system, which conserves the Hamiltonian, the
sum of the energies of waves E; and E,, the sum of the
energies of waves E, and Ej, and the total transverse mo-
mentum (see Ref. [15] for details).

Equations (1) exhibit a three-parameter family of simul-
ton solutions in the form of bright-bright-dark triplets that
travel with a common or locked velocity V [15]. The most
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remarkable physical property of these simultons is that their
speed V may be continuously varied by means of adjusting
the energy of the two bright pulses. The propagation stability
analysis of TWRISs reveals that a triplet is no longer stable
whenever its velocity V decreases below a well-defined
(critical) value, namely, V<V,.=2V,V,/(V,+V,) [15]. As an
example, in Fig. 1(a) we show the contour plot of the ampli-
tude of the three waves that compose an unstable simulton.
These plots should be compared with Fig. 1(b), obtained
from numerical propagation with an initial (i.e., at r=-5)
condition given by the exact simulton solution of Fig. 1(a).
The results of Fig. 1 illustrate that an unstable simulton with
V<V, decays into a stable simulton with V> V.. This pro-
cess is accompanied by the emission of an isolated pulse in
wave Ej. It is quite remarkable that the simulton decay and
wave emission as numerically observed in Fig. 1(b) may be
exactly reproduced in terms of an analytical higher-order
soliton solution with varying speed, or boomeron. Such a
solution was found by means of the techniques described in
Ref. [16], and it can be expressed as

E—2pV2 2V1
YA Ny -y,

eiqlzl(Hie_ie— H e'%), (2a)

2pV1 2V2
A Vv, —v,

V(1 +Q)/(1 - Q)H_e™ A+, (2b)

i i
V(1= Q)/(1 + Q)H e F*0

E2:

Es=a\V V,e' 33 — —( ! 2>E1E2’ (2¢)
; ap\ ViV,

where

A |HP?

A=1+ —
1+0 1-0

—2 cos(B)Re(H, H ' F+29),

H_,.(Z,l) — e(—BI+iXI)ze[—2V1VQ/(VI—Vz)](p—ik)t’

ViVa

<V1+V2_1>
. Xe=k F—,
Vi-V, Vi-V, 0
(V1+V2_

T Q>, @n(B) =k/(pQ),

w=-2k

L=

:1_7 —(r+\r +4k°p°),

qn= Q(Vn+l - Vn+2),

z,=z+V,t, n=1,2,3 mod (3).

It is worth noting that the above solution depends upon
seven real parameters V,V,,p.k,q,a, and 6. From the defi-
nition of Q, it is apparent that these parameters must be
chosen in such a way that if k=0 then p>>a’.

The analytical solution (2), while rather complicated at
intermediate times, asymptotically consists of one or two co-
herent structures. In fact, let us consider first the decay pro-
cess: if we assume p <0, for negative large ¢ (r——) the
boomeron is asymptotically composed of two bright pulses
(E|, E,) and a kinklike pulse (E;) traveling with the locked
velocity V;. If instead ¢ is large and positive (r— +®)
the boomeron is composed of two bright pulses (E;, E,)
and a kinklike pulse (E5) traveling at the locked velocity V,
(Vy>V)), plus another pulse (Ej3) that travels with the linear
group velocity V3. The velocities V, and V; can be calculated
from (2):

B 2V,\V,
V[ - ) (3)
Vi+V,=0(V,-V,)
2V,\V, @

V,= .
V4V, + 0V - V)

The triplet traveling at very large |¢| with the locked velocity
V; (V) is itself an exact solution of Eqs. (1), namely, it is the
unstable (stable) TWRIS as presented in Ref. [15]. Therefore

065602-2



INELASTIC SCATTERING AND INTERACTIONS OF...

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 74, 065602(R) (2006)

FIG. 2. (Color online) (a) Analytical

boomeron solution describing the collision of a
stable TWRIS with a single pulse in wave Ej.
Parameters are V|=2,V,=1,V3=0,p=1,a=1,k
=0.5,9=1,0=m/6. The triplet velocities are V;

=18 and V,=1.1 (V.,=13). (b) Numerical
double-scattering process.
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the boomeron solution (2) provides an exact description of
the decay from an unstable to a stable soliton.

Let us consider next the situation where a stable TWRIS
collides with an isolated pulse in the wave E3, namely, exci-
tation by absorption. Once again, this scattering process is
exactly described by the boomeron solution (2), and it leads
to the excitation of an unstable TWRIS, induced by the ab-
sorption of the isolated wave E3. Indeed, whenever p >0 and
t is very large and negative, the boomeron (2) is composed of
a triplet consisting of two bright pulses (in waves E|, E,) and
a kinklike pulse (in wave Ej3), all traveling with the same
velocity V;, plus an isolated pulse in wave (E3) that travels
with the linear group velocity V3. The triplet and the isolated
pulse collide and, as a result, the pulse in E5 is completely
absorbed by the triplet. Finally, for very large and positive ¢
the boomeron consists of a single triplet formed by two
bright pulses (in waves E|, E,) and a kinklike pulse (in wave
E;), again traveling together with the velocity V, (V,<V)).
Note that the asymptotic boomeron triplets traveling with
velocities V; and V, can be analytically mapped into the
stable and unstable TWRISs as given in [15]. In conclusion,
the analytical solution (2) with p>0 provides the exact de-
scription of the excitation of an unstable TWRIS as a result
of the inelastic collision between a stable TWRIS and a lin-
ear wave packet.

Figure 2(a) displays the analytical boomeron solution cor-
responding to the collision between a stable TWRIS and a
pulse in wave E5, whereas Fig. 2(b) shows the inelastic scat-
tering of the TWRIS and the linear wave as numerically
computed by integrating Eqs. (1) with the initial data at
t==5 equal to the solution of Fig. 2(a). As can be seen in
Fig. 2(b), the excited unstable TWRIS has a finite lifetime
since it eventually decays into a stable or ground state
TWRIS via the emission of another linear wave. It is worth
noting that both the excitation and the decay processes may
be described by properly adjusting the parameters of Egs.
2).

The dynamics of the scattering between TWRISs and lin-

ear waves is analogous to the interaction between radiation
and a two-level atom. Indeed, transitions between excited
and ground soliton states are induced by the absorption and
spontaneous emission of a linear pulse in the wave E;.

Let us now briefly discuss the role of the various param-
eters in Egs. (2). Two of these parameters (i.e., the velocities
V, and V,) are fixed by the linear dispersive properties of the
medium. We are thus left with five independent real param-
eters, namely, p,k,q,a,and 6 (with the restrictions a >0 and
0= #<2r). We point out that our discussion above implies
that the specification of these parameters allows one to define
the properties of both unstable and stable TWRISs since
these solitons result as asymptotic states of the analytic
boomeron expression (2) in the limit as |¢| — . The param-
eter p is associated with the rescaling of the wave ampli-
tudes, and of the coordinates z and ¢, whereas a measures the
amplitude of the kink background in wave E5. The value of k
is related to the soliton wave number. The parameter ¢ sim-
ply adds a phase shift which is linear in both z and ¢. Finally,
6 fixes the shape of the stationary kink pulse E53. By adjust-
ing the various degrees of freedom of the boomeron family
of solutions (2), one may foresee the dynamical reshaping of
the amplitude, phase, and velocity of the TWRIS, as well as
fully describe the process of energy exchange among the
three waves.

FIG. 3. (Color online) Collision of two stable TWRISs with
different velocities. Fast simulton V=1.9, slow simulton V=1.7.
Simulation is performed in a reference frame moving at velocity
Vre f= 1 8
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FIG. 4. (Color online) (a) Collision of two

" 2O

m

5 equal and in-phase stable TWRISs with the same
velocity V=1.8; (b) collision of two equal and
/4 out-of-phase stable TWRISs with the same

velocity. Simulations are performed in a refer-
ence frame moving at velocity V,,=1.8.

In order to emphasize striking features of the scattering
between TWRISs and linear waves, let us briefly consider
now the collisions between different TWRISs. Since Egs. (1)
are completely integrable, one may intuitively expect (but
not take for granted, in view of the previously discussed
inelastic soliton absorption and decay phenomena) that inter-
actions between two initially well-separated TWRISs do not
modify the shapes of triplets that emerge after the collision.
Indeed, the numerical simulation of Fig. 3 shows that this is
indeed the case as two TWRISs with different velocities pen-
etrate and cross each other with no change of their shapes.
The only effect of the interaction is a spatial shift and a phase
shift, as happens with ordinary bright TWRI solitons [12].
However, in a manner similar to cubic nonlinear Schrodinger
solitons ([17-19] and references therein), whenever the ini-
tial simulton separation is reduced, complex interaction phe-
nomena may take place owing to the excitation of higher-
order soliton solutions. For example, Fig. 4(a) shows that
two equal and in-phase TWRISs with the same velocity at-
tract each other and periodically collapse, whereas Fig. 4(b)

shows that a repulsive force exists between two equal and
out-of-phase solitons with the same velocity {the phase dif-
ference « between the two solitons is imposed by multiply-
ing the wave E, (E,) of one of the solitons by the phase
factor exp(ic) [exp(—ia)]}. In this case, two distinct TWRISs
moving with different velocities emerge from the initial col-
lision. Hence TWRI solitons may cross, attract, or repel each
other depending on their initial separation, velocity differ-
ence, and relative phase.

In conclusion, we described in terms of analytical solu-
tions the scattering process of three-wave simultons and lin-
ear waves. An unstable simulton decays into a stable simul-
ton by accelerating its speed and emitting an isolated pulse.
Moreover, a stable triplet may be excited into an unstable
simulton by slowing down as a result of the absorption of a
linear wave. We revealed the elastic nature of the interactions
between stable simultons, finding that simultons with differ-
ent speeds are stable upon collision, and that interactions of
simultons with equal speeds are strongly dependent upon
their initial relative phase.
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